Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Diabetes ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530908

RESUMO

Adiponectin has vascular anti-inflammatory and protective effects. Whilst adiponectin is known to protect against the development of albuminuria, historically the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnC). In diabetes, eGlx dysfunction occurs before podocyte damage, hence we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signalling in human GEnC through AdipoR1. It significantly reduced eGlx shedding and the TNFα-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnC in vitro. It protected against increased TNFα mRNA expression in glomeruli isolated from db/db mice, and genes associated with glycocalyx shedding (SDC4, MMP2 and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice, when administered to mice (i.p) and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.

2.
NPJ Syst Biol Appl ; 10(1): 28, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459044

RESUMO

Chronic kidney diseases (CKD) have genetic associations with kidney function. Univariate genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN), two complementary kidney function markers. However, it is unknown whether additional SNPs for kidney function can be identified by multivariate statistical analysis. To address this, we applied canonical correlation analysis (CCA), a multivariate method, to two individual-level CKD genotype datasets, and metaCCA to two published GWAS summary statistics datasets. We identified SNPs previously associated with kidney function by published univariate GWASs with high replication rates, validating the metaCCA method. We then extended discovery and identified previously unreported lead SNPs for both kidney function markers, jointly. These showed expression quantitative trait loci (eQTL) colocalisation with genes having significant differential expression between CKD and healthy individuals. Several of these identified lead missense SNPs were predicted to have a functional impact, including in SLC14A2. We also identified previously unreported lead SNPs that showed significant correlation with both kidney function markers, jointly, in the European ancestry CKDGen, National Unified Renal Translational Research Enterprise (NURTuRE)-CKD and Salford Kidney Study (SKS) datasets. Of these, rs3094060 colocalised with FLOT1 gene expression and was significantly more common in CKD cases in both NURTURE-CKD and SKS, than in the general population. Overall, by using multivariate analysis by CCA, we identified additional SNPs and genes for both kidney function and CKD, that can be prioritised for further CKD analyses.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Renal Crônica , Humanos , Estudo de Associação Genômica Ampla/métodos , Análise de Correlação Canônica , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/epidemiologia , Rim , Locos de Características Quantitativas/genética
3.
Cardiovasc Diabetol ; 23(1): 50, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302978

RESUMO

BACKGROUND: Diabetes mellitus is a chronic disease which is detrimental to cardiovascular health, often leading to secondary microvascular complications, with huge global health implications. Therapeutic interventions that can be applied to multiple vascular beds are urgently needed. Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are characterised by early microvascular permeability changes which, if left untreated, lead to visual impairment and renal failure, respectively. The heparan sulphate cleaving enzyme, heparanase, has previously been shown to contribute to diabetic microvascular complications, but the common underlying mechanism which results in microvascular dysfunction in conditions such as DR and DKD has not been determined. METHODS: In this study, two mouse models of heparan sulphate depletion (enzymatic removal and genetic ablation by endothelial specific Exotosin-1 knock down) were utilized to investigate the impact of endothelial cell surface (i.e., endothelial glycocalyx) heparan sulphate loss on microvascular barrier function. Endothelial glycocalyx changes were measured using fluorescence microscopy or transmission electron microscopy. To measure the impact on barrier function, we used sodium fluorescein angiography in the eye and a glomerular albumin permeability assay in the kidney. A type 2 diabetic (T2D, db/db) mouse model was used to determine the therapeutic potential of preventing heparan sulphate damage using treatment with a novel heparanase inhibitor, OVZ/HS-1638. Endothelial glycocalyx changes were measured as above, and microvascular barrier function assessed by albumin extravasation in the eye and a glomerular permeability assay in the kidney. RESULTS: In both models of heparan sulphate depletion, endothelial glycocalyx depth was reduced and retinal solute flux and glomerular albumin permeability was increased. T2D mice treated with OVZ/HS-1638 had improved endothelial glycocalyx measurements compared to vehicle treated T2D mice and were simultaneously protected from microvascular permeability changes associated with DR and DKD. CONCLUSION: We demonstrate that endothelial glycocalyx heparan sulphate plays a common mechanistic role in microvascular barrier function in the eye and kidney. Protecting the endothelial glycocalyx damage in diabetes, using the novel heparanase inhibitor OVZ/HS-1638, effectively prevents microvascular permeability changes associated with DR and DKD, demonstrating a novel systemic approach to address diabetic microvascular complications.


Assuntos
Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Nefropatias Diabéticas , Glucuronidase , Animais , Camundongos , Glicocálix/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/prevenção & controle , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacologia , Albuminas/farmacologia , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/prevenção & controle , Angiopatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
4.
Kidney Int ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995908

RESUMO

Podocin is a key membrane scaffolding protein of the kidney podocyte essential for intact glomerular filtration. Mutations in NPHS2, the podocin-encoding gene, represent the commonest form of inherited nephrotic syndrome (NS), with early, intractable kidney failure. The most frequent podocin gene mutation in European children is R138Q, causing retention of the misfolded protein in the endoplasmic reticulum. Here, we provide evidence that podocin R138Q (but not wild-type podocin) complexes with the intermediate filament protein keratin 8 (K8) thereby preventing its correct trafficking to the plasma membrane. We have also identified a small molecule (c407), a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator protein defect, that interrupts this complex and rescues mutant protein mistrafficking. This results in both the correct localization of podocin at the plasma membrane and functional rescue in both human patient R138Q mutant podocyte cell lines, and in a mouse inducible knock-in model of the R138Q mutation. Importantly, complete rescue of proteinuria and histological changes was seen when c407 was administered both via osmotic minipumps or delivered orally prior to induction of disease or crucially via osmotic minipump two weeks after disease induction. Thus, our data constitute a therapeutic option for patients with NS bearing a podocin mutation, with implications for other misfolding protein disorders. Further studies are necessary to confirm our findings.

5.
Med ; 4(11): 761-777.e8, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37863058

RESUMO

BACKGROUND: Shiga toxin (Stx)-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) is the leading cause of acute kidney injury in children, with an associated mortality of up to 5%. The mechanisms underlying STEC-HUS and why the glomerular microvasculature is so susceptible to injury following systemic Stx infection are unclear. METHODS: Transgenic mice were engineered to express the Stx receptor (Gb3) exclusively in their kidney podocytes (Pod-Gb3) and challenged with systemic Stx. Human glomerular cell models and kidney biopsies from patients with STEC-HUS were also studied. FINDINGS: Stx-challenged Pod-Gb3 mice developed STEC-HUS. This was mediated by a reduction in podocyte vascular endothelial growth factor A (VEGF-A), which led to loss of glomerular endothelial cell (GEnC) glycocalyx, a reduction in GEnC inhibitory complement factor H binding, and local activation of the complement pathway. Early therapeutic inhibition of the terminal complement pathway with a C5 inhibitor rescued this podocyte-driven, Stx-induced HUS phenotype. CONCLUSIONS: This study potentially explains why systemic Stx exposure targets the glomerulus and supports the early use of terminal complement pathway inhibition in this devastating disease. FUNDING: This work was supported by the UK Medical Research Council (MRC) (grant nos. G0901987 and MR/K010492/1) and Kidney Research UK (grant nos. TF_007_20151127, RP42/2012, and SP/FSGS1/2013). The Mary Lyon Center is part of the MRC Harwell Institute and is funded by the MRC (A410).


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Nefropatias , Podócitos , Escherichia coli Shiga Toxigênica , Criança , Humanos , Camundongos , Animais , Podócitos/metabolismo , Podócitos/patologia , Toxina Shiga/genética , Toxina Shiga/metabolismo , Toxina Shiga/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/metabolismo , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/metabolismo , Síndrome Hemolítico-Urêmica/patologia , Escherichia coli Shiga Toxigênica/metabolismo , Ativação do Complemento , Nefropatias/patologia
6.
Sci Transl Med ; 15(708): eabc8226, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556557

RESUMO

Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03-mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9-mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches.


Assuntos
Nefropatias , Síndrome Nefrótica , Camundongos , Humanos , Animais , Síndrome Nefrótica/genética , Síndrome Nefrótica/terapia , Dependovirus/genética , Albuminúria , Modelos Genéticos , Terapia Genética/métodos , Modelos Animais de Doenças , Camundongos Knockout , Vetores Genéticos
7.
Biomater Sci ; 11(17): 5706-5726, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37401545

RESUMO

Chronic Kidney Disease (CKD) is a growing worldwide problem, leading to end-stage renal disease (ESRD). Current treatments for ESRD include haemodialysis and kidney transplantation, but both are deemed inadequate since haemodialysis does not address all other kidney functions, and there is a shortage of suitable donor organs for transplantation. Research in kidney tissue engineering has been initiated to take a regenerative medicine approach as a potential treatment alternative, either to develop effective cell therapy for reconstruction or engineer a functioning bioartificial kidney. Currently, renal tissue engineering encompasses various materials, mainly polymers and hydrogels, which have been chosen to recreate the sophisticated kidney architecture. It is essential to address the chemical and mechanical aspects of the materials to ensure they can support cell development to restore functionality and feasibility. This paper reviews the types of polymers and hydrogels that have been used in kidney tissue engineering applications, both natural and synthetic, focusing on the processing and formulation used in creating bioactive substrates and how these biomaterials affect the cell biology of the kidney cells used.


Assuntos
Falência Renal Crônica , Engenharia Tecidual , Humanos , Medicina Regenerativa , Hidrogéis , Polímeros , Rim , Materiais Biocompatíveis , Falência Renal Crônica/terapia
8.
Am J Physiol Renal Physiol ; 325(4): F465-F478, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471420

RESUMO

Glomerular endothelial cell (GEnC) fenestrations are a critical component of the glomerular filtration barrier. Their unique nondiaphragmed structure is key to their function in glomerular hydraulic permeability, and their aberration in disease can contribute to loss of glomerular filtration function. This review provides a comprehensive update of current understanding of the regulation and biogenesis of fenestrae. We consider diseases in which GEnC fenestration loss is recognized or may play a role and discuss methods with potential to facilitate the study of these critical structures. Literature is drawn from GEnCs as well as other fenestrated cell types such as liver sinusoidal endothelial cells that most closely parallel GEnCs.


Assuntos
Células Endoteliais , Nefropatias , Humanos , Células Endoteliais/metabolismo , Endotélio , Glomérulos Renais/metabolismo , Barreira de Filtração Glomerular , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo
9.
Kidney Int ; 104(2): 265-278, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36940798

RESUMO

About 30% of patients who have a kidney transplant with underlying nephrotic syndrome (NS) experience rapid relapse of disease in their new graft. This is speculated to be due to a host-derived circulating factor acting on podocytes, the target cells in the kidney, leading to focal segmental glomerulosclerosis (FSGS). Our previous work suggests that podocyte membrane protease receptor 1 (PAR-1) is activated by a circulating factor in relapsing FSGS. Here, the role of PAR-1 was studied in human podocytes in vitro, and using a mouse model with developmental or inducible expression of podocyte-specific constitutively active PAR-1, and using biopsies from patients with nephrotic syndrome. In vitro podocyte PAR-1 activation caused a pro-migratory phenotype with phosphorylation of the kinase JNK, VASP protein and docking protein Paxillin. This signaling was mirrored in podocytes exposed to patient relapse-derived NS plasma and in patient disease biopsies. Both developmental and inducible activation of transgenic PAR-1 (NPHS2 Cre PAR-1Active+/-) caused early severe nephrotic syndrome, FSGS, kidney failure and, in the developmental model, premature death. We found that the non-selective cation channel protein TRPC6 could be a key modulator of PAR-1 signaling and TRPC6 knockout in our mouse model significantly improved proteinuria and extended lifespan. Thus, our work implicates podocyte PAR-1 activation as a key initiator of human NS circulating factor and that the PAR-1 signaling effects were partly modulated through TRPC6.


Assuntos
Glomerulosclerose Segmentar e Focal , Síndrome Nefrótica , Podócitos , Animais , Humanos , Podócitos/patologia , Síndrome Nefrótica/patologia , Glomerulosclerose Segmentar e Focal/patologia , Canal de Cátion TRPC6/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Modelos Animais de Doenças , Recidiva
10.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36749631

RESUMO

The glomerular endothelial glycocalyx (GEnGlx) forms the first part of the glomerular filtration barrier. Previously, we showed that mineralocorticoid receptor (MR) activation caused GEnGlx damage and albuminuria. In this study, we investigated whether MR antagonism could limit albuminuria in diabetes and studied the site of action. Streptozotocin-induced diabetic Wistar rats developed albuminuria, increased glomerular albumin permeability (Ps'alb), and increased glomerular matrix metalloproteinase (MMP) activity with corresponding GEnGlx loss. MR antagonism prevented albuminuria progression, restored Ps'alb, preserved GEnGlx, and reduced MMP activity. Enzymatic degradation of the GEnGlx negated the benefits of MR antagonism, confirming their dependence on GEnGlx integrity. Exposing human glomerular endothelial cells (GEnC) to diabetic conditions in vitro increased MMPs and caused glycocalyx damage. Amelioration of these effects confirmed a direct effect of MR antagonism on GEnC. To confirm relevance to human disease, we used a potentially novel confocal imaging method to show loss of GEnGlx in renal biopsy specimens from patients with diabetic nephropathy (DN). In addition, patients with DN randomized to receive an MR antagonist had reduced urinary MMP2 activity and albuminuria compared with placebo and baseline levels. Taken together, our work suggests that MR antagonists reduce MMP activity and thereby preserve GEnGlx, resulting in reduced glomerular permeability and albuminuria in diabetes.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ratos , Animais , Humanos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Albuminúria/tratamento farmacológico , Células Endoteliais/metabolismo , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/uso terapêutico , Glicocálix/metabolismo , Ratos Wistar , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus/metabolismo
11.
Biomedicines ; 11(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36831050

RESUMO

A small subset of people with nephrotic syndrome (NS) have genetically driven disease. However, the disease mechanisms for the remaining majority are unknown. Epigenetic marks are reversible but stable regulators of gene expression with utility as biomarkers and therapeutic targets. We aimed to identify and assess all published human studies of epigenetic mechanisms in NS. PubMed (MEDLINE) and Embase were searched for original research articles examining any epigenetic mechanism in samples collected from people with steroid resistant NS, steroid sensitive NS, focal segmental glomerulosclerosis or minimal change disease. Study quality was assessed by using the Joanna Briggs Institute critical appraisal tools. Forty-nine studies met our inclusion criteria. The majority of these examined micro-RNAs (n = 35, 71%). Study quality was low, with only 23 deemed higher quality, and most of these included fewer than 100 patients and failed to validate findings in a second cohort. However, there were some promising concordant results between the studies; higher levels of serum miR-191 and miR-30c, and urinary miR-23b-3p and miR-30a-5p were observed in NS compared to controls. We have identified that the epigenome, particularly DNA methylation and histone modifications, has been understudied in NS. Large clinical studies, which utilise the latest high-throughput technologies and analytical pipelines, should focus on addressing this critical gap in the literature.

12.
Nucleic Acids Res ; 50(13): 7783-7799, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801912

RESUMO

CRISPR-based precise gene-editing requires simultaneous delivery of multiple components into living cells, rapidly exceeding the cargo capacity of traditional viral vector systems. This challenge represents a major roadblock to genome engineering applications. Here we exploit the unmatched heterologous DNA cargo capacity of baculovirus to resolve this bottleneck in human cells. By encoding Cas9, sgRNA and Donor DNAs on a single, rapidly assembled baculoviral vector, we achieve with up to 30% efficacy whole-exon replacement in the intronic ß-actin (ACTB) locus, including site-specific docking of very large DNA payloads. We use our approach to rescue wild-type podocin expression in steroid-resistant nephrotic syndrome (SRNS) patient derived podocytes. We demonstrate single baculovirus vectored delivery of single and multiplexed prime-editing toolkits, achieving up to 100% cleavage-free DNA search-and-replace interventions without detectable indels. Taken together, we provide a versatile delivery platform for single base to multi-gene level genome interventions, addressing the currently unmet need for a powerful delivery system accommodating current and future CRISPR technologies without the burden of limited cargo capacity.


Assuntos
Baculoviridae , Sistemas CRISPR-Cas , Baculoviridae/genética , Sistemas CRISPR-Cas/genética , DNA/genética , Edição de Genes , Vetores Genéticos , Humanos
13.
Vet J ; 285: 105843, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654338

RESUMO

The endothelial glycocalyx (eGlx) is a critically important structure lining the luminal surface of endothelial cells. There is increasing evidence, in human patients and animal models, for its crucial role in the maintenance of health. Moreover, its damage is associated with the pathogenesis of multiple disease states. This review provides readers with an overview of the eGlx; summarising its structure, essential functions, and evidence for its role in disease. We highlight the lack of studies regarding the eGlx in cats and dogs, particularly in naturally occurring diseases. Importantly, we discuss techniques to aid its study, which can be applied to veterinary species. Finally, we present targeted therapies aimed at preserving, and in some cases, restoring damaged eGlx.


Assuntos
Células Endoteliais , Glicocálix , Animais , Gatos , Cães , Endotélio Vascular , Humanos
14.
Vet J ; 285: 105845, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35640794

RESUMO

The endothelial glycocalyx (eGlx) lines the luminal surface of endothelial cells, maintaining vascular health. Glycocalyx damage is pathophysiologically important in many diseases across species however few studies have investigated its breakdown in naturally occurring disease in dogs. The aims of the study were to investigate eGlx damage in dogs with myxomatous mitral valve disease (MMVD) diagnosed on echocardiography, and dogs in a hypercoagulable state diagnosed using thromboelastography (TEG), by measuring serum hyaluronan concentrations. Serum hyaluronan was quantified in dogs with MMVD (n = 27), hypercoagulability (n = 21), and in healthy controls dogs (n = 18). Serum hyaluronan concentrations were measured using a commercially-available ELISA validated for use in dogs. Hyaluronan concentrations were compared among groups using Kruskal-Wallis tests, and post-hoc with Dunn's tests. Serum hyaluronan concentrations (median [range]) were significantly increased in dogs with MMVD (62.4 [22.8-201] ng/mL; P = 0.031) and hypercoagulability (92.40 [16.9-247.6] ng/mL; P < 0.001) compared to controls (45.7 [8.7-80.2] ng/mL). Measurement of serum hyaluronan concentration offers a clinically applicable marker of eGlx health and suggests the presence of eGlx damage in dogs with MMVD and dogs in a hypercoagulable state.


Assuntos
Doenças do Cão , Doenças das Valvas Cardíacas , Trombofilia , Animais , Biomarcadores , Cães , Células Endoteliais , Glicocálix/metabolismo , Doenças das Valvas Cardíacas/veterinária , Ácido Hialurônico , Valva Mitral , Trombofilia/veterinária
15.
Vet J ; 285: 105844, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35640795

RESUMO

The endothelial glycocalyx (eGlx) lines the luminal surface of endothelial cells. It is critical in maintaining vascular health and when damaged contributes to many diseases. Its fragility makes studying the eGlx technically challenging. The current reference standard for eGlx visualisation, by electron microscopy using glutaraldehyde/Alcian blue perfusion fixation, has not been previously reported in dogs. Established techniques were applied to achieve visualisation of the eGlx in the microvasculature of reproductive tissue in five healthy dogs undergoing elective neutering. Uterine and testicular artery samples underwent perfusion fixation, in the presence of Alcian blue, prior to transmission electron microscopy imaging. Image processing software was used to determine eGlx depth. EGlx was visualised in the arteries of two dogs, one testicular and one uterine, with median (range) eGlx depths of 68.2 nm (32.1-122.9 nm) and 47.6 nm (26.1-129.4 nm) respectively. Study of the eGlx is technically challenging, particularly its direct visualisation in clinical samples. Further research is needed to develop more clinically applicable techniques to measure eGlx health.


Assuntos
Células Endoteliais , Glicocálix , Azul Alciano , Animais , Cães , Perfusão/veterinária
16.
J Am Soc Nephrol ; 33(6): 1120-1136, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35292439

RESUMO

BACKGROUND: Glomerular endothelial cell (GEnC) fenestrations are recognized as an essential component of the glomerular filtration barrier, yet little is known about how they are regulated and their role in disease. METHODS: We comprehensively characterized GEnC fenestral and functional renal filtration changes including measurement of glomerular Kf and GFR in diabetic mice (BTBR ob-/ob- ). We also examined and compared human samples. We evaluated Eps homology domain protein-3 (EHD3) and its association with GEnC fenestrations in diabetes in disease samples and further explored its role as a potential regulator of fenestrations in an in vitro model of fenestration formation using b.End5 cells. RESULTS: Loss of GEnC fenestration density was associated with decreased filtration function in diabetic nephropathy. We identified increased diaphragmed fenestrations in diabetes, which are posited to increase resistance to filtration and further contribute to decreased GFR. We identified decreased glomerular EHD3 expression in diabetes, which was significantly correlated with decreased fenestration density. Reduced fenestrations in EHD3 knockdown b.End5 cells in vitro further suggested a mechanistic role for EHD3 in fenestration formation. CONCLUSIONS: This study demonstrates the critical role of GEnC fenestrations in renal filtration function and suggests EHD3 may be a key regulator, loss of which may contribute to declining glomerular filtration function through aberrant GEnC fenestration regulation. This points to EHD3 as a novel therapeutic target to restore filtration function in disease.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Fenômenos Fisiológicos do Sistema Urinário , Animais , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Glomérulos Renais/metabolismo , Camundongos
17.
Diabetologia ; 65(5): 879-894, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35211778

RESUMO

AIMS/HYPOTHESIS: Diabetic cardiomyopathy (DCM) is a serious and under-recognised complication of diabetes. The first sign is diastolic dysfunction, which progresses to heart failure. The pathophysiology of DCM is incompletely understood but microcirculatory changes are important. Endothelial glycocalyx (eGlx) plays multiple vital roles in the microcirculation, including in the regulation of vascular permeability, and is compromised in diabetes but has not previously been studied in the coronary microcirculation in diabetes. We hypothesised that eGlx damage in the coronary microcirculation contributes to increased microvascular permeability and hence to cardiac dysfunction. METHODS: We investigated eGlx damage and cardiomyopathy in mouse models of type 1 (streptozotocin-induced) and type 2 (db/db) diabetes. Cardiac dysfunction was determined by echocardiography. We obtained eGlx depth and coverage by transmission electron microscopy (TEM) on mouse hearts perfusion-fixed with glutaraldehyde and Alcian Blue. Perivascular oedema was assessed from TEM images by measuring the perivascular space area. Lectin-based fluorescence was developed to study eGlx in paraformaldehyde-fixed mouse and human tissues. The eGlx of human conditionally immortalised coronary microvascular endothelial cells (CMVECs) in culture was removed with eGlx-degrading enzymes before measurement of protein passage across the cell monolayer. The mechanism of eGlx damage in the diabetic heart was investigated by quantitative reverse transcription-PCR array and matrix metalloproteinase (MMP) activity assay. To directly demonstrate that eGlx damage disturbs cardiac function, isolated rat hearts were treated with enzymes in a Langendorff preparation. Angiopoietin 1 (Ang1) is known to restore eGlx and so was used to investigate whether eGlx restoration reverses diastolic dysfunction in mice with type 1 diabetes. RESULTS: In a mouse model of type 1 diabetes, diastolic dysfunction (confirmed by echocardiography) was associated with loss of eGlx from CMVECs and the development of perivascular oedema, suggesting increased microvascular permeability. We confirmed in vitro that eGlx removal increases CMVEC monolayer permeability. We identified increased MMP activity as a potential mechanism of eGlx damage and we observed loss of syndecan 4 consistent with MMP activity. In a mouse model of type 2 diabetes we found a similar loss of eGlx preceding the development of diastolic dysfunction. We used isolated rat hearts to demonstrate that eGlx damage (induced by enzymes) is sufficient to disturb cardiac function. Ang1 restored eGlx and this was associated with reduced perivascular oedema and amelioration of the diastolic dysfunction seen in mice with type 1 diabetes. CONCLUSIONS/INTERPRETATION: The association of CMVEC glycocalyx damage with diastolic dysfunction in two diabetes models suggests that it may play a pathophysiological role and the enzyme studies confirm that eGlx damage is sufficient to impair cardiac function. Ang1 rapidly restores the CMVEC glycocalyx and improves diastolic function. Our work identifies CMVEC glycocalyx damage as a potential contributor to the development of DCM and therefore as a therapeutic target.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Angiopoietina-1/metabolismo , Animais , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Microcirculação , Ratos
18.
Pediatr Nephrol ; 37(11): 2643-2656, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35211795

RESUMO

BACKGROUND: Variants in genes encoding nuclear pore complex (NPC) proteins are a newly identified cause of paediatric steroid-resistant nephrotic syndrome (SRNS). Recent reports describing NUP93 variants suggest these could be a significant cause of paediatric onset SRNS. We report NUP93 cases in the UK and demonstrate in vivo functional effects of Nup93 depletion in a fly (Drosophila melanogaster) nephrocyte model. METHODS: Three hundred thirty-seven paediatric SRNS patients from the National cohort of patients with Nephrotic Syndrome (NephroS) were whole exome and/or whole genome sequenced. Patients were screened for over 70 genes known to be associated with Nephrotic Syndrome (NS). D. melanogaster Nup93 knockdown was achieved by RNA interference using nephrocyte-restricted drivers. RESULTS: Six novel homozygous and compound heterozygous NUP93 variants were detected in 3 sporadic and 2 familial paediatric onset SRNS characterised histologically by focal segmental glomerulosclerosis (FSGS) and progressing to kidney failure by 12 months from clinical diagnosis. Silencing of the two orthologs of human NUP93 expressed in D. melanogaster, Nup93-1, and Nup93-2 resulted in significant signal reduction of up to 82% in adult pericardial nephrocytes with concomitant disruption of NPC protein expression. Additionally, nephrocyte morphology was highly abnormal in Nup93-1 and Nup93-2 silenced flies surviving to adulthood. CONCLUSION: We expand the spectrum of NUP93 variants detected in paediatric onset SRNS and demonstrate its incidence within a national cohort. Silencing of either D. melanogaster Nup93 ortholog caused a severe nephrocyte phenotype, signaling an important role for the nucleoporin complex in podocyte biology. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Drosophila melanogaster , Síndrome Nefrótica , Complexo de Proteínas Formadoras de Poros Nucleares , Podócitos , Adulto , Animais , Criança , Modelos Animais de Doenças , Drosophila melanogaster/genética , Resistência a Medicamentos/genética , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Podócitos/metabolismo
19.
Am J Transplant ; 22(4): 1073-1087, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34878723

RESUMO

In brain death, cerebral injury contributes to systemic biological dysregulation, causing significant cellular stress in donor kidneys adversely impacting the quality of grafts. Here, we hypothesized that donation after brain death (DBD) kidneys undergo proteolytic processes that may deem grafts susceptible to posttransplant dysfunction. Using mass spectrometry and immunoblotting, we mapped degradation profiles of cytoskeletal proteins in deceased and living donor kidney biopsies. We found that key cytoskeletal proteins in DBD kidneys were proteolytically cleaved, generating peptide fragments, predominantly in grafts with suboptimal posttransplant function. Interestingly, α-actinin-4 and talin-1 proteolytic fragments were detected in brain death but not in circulatory death or living donor kidneys with similar donor characteristics. As talin-1 is a specific proteolytic target of calpain-1, we investigated a potential trigger of calpain activation and talin-1 degradation using human ex vivo precision-cut kidney slices and in vitro podocytes. Notably, we showed that activation of calpain-1 by transforming growth factor-ß generated proteolytic fragments of talin-1 that matched the degradation fragments detected in DBD preimplantation kidneys, also causing dysregulation of the actin cytoskeleton in human podocytes; events that were reversed by calpain-1 inhibition. Our data provide initial evidence that brain death donor kidneys are more susceptible to cytoskeletal protein degradation. Correlation to posttransplant outcomes may be established by future studies.


Assuntos
Transplante de Rim , Obtenção de Tecidos e Órgãos , Morte Encefálica/patologia , Proteínas do Citoesqueleto , Sobrevivência de Enxerto , Humanos , Rim/patologia , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Doadores Vivos , Proteólise , Doadores de Tecidos
20.
Commun Biol ; 4(1): 1351, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857869

RESUMO

The glomerulus is the filtration unit of the kidney. Injury to any component of this specialised structure leads to impaired filtration and eventually fibrosis and chronic kidney disease. Current two and three dimensional (2D and 3D) models that attempt to recreate structure and interplay between glomerular cells are imperfect. Most 2D models are simplistic and unrepresentative, and 3D organoid approaches are currently difficult to reproduce at scale and do not fit well with current industrial drug-screening approaches. Here we report a rapidly generated and highly reproducible 3D co-culture spheroid model (GlomSpheres), better demonstrating the specialised physical and molecular structure of a glomerulus. Co-cultured using a magnetic spheroid formation approach, conditionally immortalised (CI) human podocytes and glomerular endothelial cells (GEnCs) deposited mature, organized isoforms of collagen IV and Laminin. We demonstrate a dramatic upregulation of key podocyte (podocin, nephrin and podocalyxin) and GEnC (pecam-1) markers. Electron microscopy revealed podocyte foot process interdigitation and endothelial vessel formation. Incubation with pro-fibrotic agents (TGF-ß1, Adriamycin) induced extracellular matrix (ECM) dysregulation and podocyte loss, which were attenuated by the anti-fibrotic agent Nintedanib. Incubation with plasma from patients with kidney disease induced acute podocyte loss and ECM dysregulation relative to patient matched remission plasma, and Nintedanib reduced podocyte loss. Finally, we developed a rapid imaging approach to demonstrate the model's usefulness in higher throughput pharmaceutical screening. GlomSpheres therefore represent a robust, scalable, replacement for 2D in vitro glomerular disease models.


Assuntos
Técnicas de Cocultura/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Glomérulos Renais/fisiologia , Esferoides Celulares/fisiologia , Células Cultivadas , Células Endoteliais/fisiologia , Humanos , Podócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...